Scientists Study Sweat, the Small Stuff

Feb. 13, 2020

A team of researchers from three University of Arizona colleges, including Dr. Esther Sternberg with the UArizona College of Medicine – Tucson, is developing new methods to collect and analyze sweat for clues about how the body is functioning.

Image

Imagine if you could know the status of any molecule in your body without needing to get your blood drawn. Science fiction? Almost – but researchers at the University of Arizona are working on ways to do this by measuring molecules in sweat.

When physicians take blood samples from patients, they send the samples to labs to be analyzed for biomarkers. These biological clues indicate everything from cholesterol levels to disease risks, and they can be used to monitor patient health or make diagnostic decisions. The same biomarkers also are found in sweat.

Image
Dr. Erin Ratcliff in the UArizona Laboratory for Interface Science of Printable Electronic Materials, which is developing ways to suss out health and performance clues measured in our sweat via wearable sensors and devices.

Dr. Erin Ratcliff in the UArizona Laboratory for Interface Science of Printable Electronic Materials, which is developing ways to suss out health and performance clues measured in our sweat via wearable sensors and devices.

Using $519,000 in funding from the SEMI Nano-Bio Materials Consortium, or SEMI-NBMC, Erin Ratcliff, PhD, a Department of Materials Science and Engineering professor at the UArizona College of Engineering and head of the Laboratory for Interface Science of Printable Electronic Materials, is leading a project to develop new ways of collecting and analyzing the clues sweat has to offer. Ultimately, this work could allow physicians to use patient sweat samples in the same way they currently use blood samples, for a less invasive and more informative approach to establishing and monitoring patient health.

“What’s unique about this is that we are combining biology and engineering expertise to develop a wearable device that will detect molecules in sweat, so you don’t have to get your blood drawn to know the health status of your immune system, your nervous system, indeed, any system in the body,” said co-investigator and sweat biomarker pioneer Esther Sternberg, MD. “The goal, eventually, is to create a device that will provide physicians and health care providers the ability to monitor your health status continuously and in real-time without needing to draw blood.”

“We are pleased to sponsor and eager to complete this project with the University of Arizona’s impressive team bridging the disciplines of engineering and life sciences,” said Melissa Grupen-Shemansky, PhD, chief technology officer and executive director of SEMI-NBMC. “A concerted interdisciplinary approach at the early stages of R & D is relatively new, and there is much learning on both sides. The University of Arizona team brings unique strengths in both areas, and we are excited to be partnering and collaborating with them.”

Image
Dr. Esther Sternberg is a collaborator on the wearables and sweat sensors project funded by the SEMI Nano-Bio Materials Consortium

Dr. Esther Sternberg is a collaborator on the wearables and sweat sensors project funded by the SEMI Nano-Bio Materials Consortium

Ratcliff’s co-investigators are J. Ray Runyon, a research assistant professor in the Department of Environmental Science in the College of Agriculture and Life Sciences, and Dr. Sternberg, a professor of medicine and psychology at the College of Medicine – Tucson, research director for the Andrew Weil Center for Integrative Medicine; director of the Institute on Place, Wellbeing, and Performance; and the Andrew Weil Inaugural Chair for Research in Integrative Medicine. All three researchers are members of the BIO5 Institute.

Standardized Sample Collection

In order to study sweat, researchers need to collect samples of it, and there are a number of ways to do so.

“The obvious idea would be to make a patch that gets information from many pores at once, but the problem is that this creates a space between the patch and your skin, and you have to wait for it to fill up with sweat,” Ratcliff said. “We hypothesize that while you’re waiting, these molecules – the very molecules you’re trying to detect and analyze – are changing chemically.”

The team’s first task is to develop new, continuous and hands-free collection devices that deliver high-quality, standardized sweat samples. This will allow health care professionals to gain a more holistic picture of a patient's bodily systems over an extended period, rather than the “snapshot” a blood draw can provide of a particular moment.

Currently, sweat labs across the world are using different methods to collect samples, which limits researchers’ ability to compare data. Standardizing the collection method could provide researchers, including medical device developers, with a new degree of confidence in sweat sample data.

“High-quality data, with respect to different target molecular biomarkers in sweat, requires that a high-quality sample be collected,” Runyon said. “This will be the first hands-free method that will truly take into account the interplay of the chemistry of sweat, the target biomarker and the device material.”

Low-level Detection

The team is also developing methods for researchers to detect and analyze neuropeptides in the collected samples. Used by neurons to communicate with each other, these small molecules are involved in biological functions, including metabolism, reproduction and memory.

Commercial wearable devices monitor metrics like heart rate, and some use sweat sensors to monitor dehydration level. Measuring neuropeptides, however, will allow researchers to zoom in millions of times closer to investigate stress and relaxation responses at the molecular level.

“The idea is that your sweat is reflecting your nervous system – all of the neurotransmitters your body uses to signal between the brain and the rest of the body,” Ratcliff said. “Monitoring this biochemical response continually, over a 24-hour cycle, can inform us about the health of the wearer and also act as a diagnostic tool.”

 

NOTE: Photos available upon request.

About the University of Arizona College of Medicine –Tucson
The University of Arizona College of Medicine – Tucson is shaping the future of medicine through state-of-the-art medical education programs, groundbreaking research and advancements in patient care in Arizona and beyond. Founded in 1967, the college boasts more than 50 years of innovation, ranking among the top medical schools in the nation for research and primary care. Through the university's partnership with Banner Health, one of the largest nonprofit health care systems in the country, the college is leading the way in academic medicine. For more information, visit medicine.arizona.edu (Follow us: Facebook | Twitter | Instagram | LinkedIn).

About the University of Arizona Health Sciences
The University of Arizona Health Sciences is the statewide leader in biomedical research and health professions training. The UArizona Health Sciences includes the Colleges of Medicine (Tucson and Phoenix), Nursing, Pharmacy, and the Mel and Enid Zuckerman College of Public Health, with main campus locations in Tucson and the growing Phoenix Biomedical Campus in downtown Phoenix. From these vantage points, the Health Sciences reaches across the state of Arizona and the greater Southwest to provide cutting-edge health education, research and community outreach services. A major economic engine, the Health Sciences employs nearly 5,000 people, has approximately 900 faculty members and garners $200 million in research grants and contracts annually. For more information: uahs.arizona.edu (Follow us: Facebook | Twitter | YouTube | LinkedIn | Instagram).